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Abstract 

The influence of both diffraction and geometrical optics 
in the formation of the contrast of dislocations in X-ray 
topography has been studied; it is shown that newly 
created wavefields, i.e. diffraction, are mainly respon- 
sible for the contrast of such a defect except in the case 
of a minimum of contrast which may be explained by 
geometrical optics only. It is concluded that it is not 
possible in general to determine the sense of the Burgers 
vector of a dislocation with geometrical theories alone 
and that diffraction must be taken into account. 

Introduction 

The contrast of dislocations in X-ray projection topo- 
graphs is now well understood; it is usual to distinguish 
three parts in the image of a defect: the direct image 
which may be approximately explained through 
kinematical diffraction and the intermediary and 
dynamical images which are due to dynamical 
phenomena. The main achievement was when Balibar 
& Authier (1967) were able to simulate the complete 
image of a dislocation by the means of a computer. This 
also proved that the equations established by Takagi 
(1962, 1969) and Taupin (1964) successfully predict 
the contrast of any kind of defect. The disadvantage is 
that the notion of wavefields disappears and that 
simulations give only a global understanding without 
any exact knowledge and satisfactory explanation for 
the contrast of the defect. It is not possible to appreciate 
exactly what happens in the deformed part of the 
crystal. 

The contrast of deformed crystals may be also 
studied by theories based on geometrical optics 
(Penning & Polder, 1961; Kato, 1963); their main 
advantage is that the notion of wavefields is not lost and 
that it is possible to calculate their paths. Using this 
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theory Kambe (1963) came to the conclusion that the 
dynamical image is the caustic of wavefields bent by the 
deformed areas near the dislocation. Unfortunately this 
theory is limited with respect to large deformations and 
it was necessary to neglect the contribution of areas 
near the core where strains are very large. It is 
particularly well known that the intermediary image 
may not be explained through the Eikonal theory 
(Authier, 1967) and that observed fringes are the result 
of interferences between normal and extra wavefields. 
This has led to the concept of newly created wavefields 
(Authier & Balibar, 1970) and has been proved experi- 
mentally (Authier, Balibar & Epelboin, 1970). 

The contrast of a dislocation may thus be explained 
taking into account both phenomena: the curved wave- 
fields of the Eikonal theory which correspond to the 
geometrical optics and the newly created wavefields 
which are a diffraction phenomenon. 

In this paper we try to understand the relative 
importance of these phenomena in the formation of the 
contrast of a dislocation. We first recall the meaning of 
the criterion of the geometrical optics which separates 
the domains of validity of the theories which deal with 
geometrical optics or diffraction; we then apply it to the 
study of the contrast of different dislocations. This is 
done by means of computer simulations. 

I. Geometrical optics and diffraction 

The physical explanation of both phenomena may be 
understood through the notion of wave packets (Balibar 
& Malgrange, 1975; Balibar, 1975). 

The Eikonal theory is based on the assumption that 
any wavefield may be considered as the sum of 
individual plane waves. When a deformation exists 
somewhere in the crystal a plane wave remains a plane 
wave; its path is bent but it is possible to follow each 
individual wavefield through the whole crystal. 

Let us now consider a wave packet incident on the 
crystal in place of individual plane waves. We can no 
longer attribute a unique wave vector to the wave 
packet, which now possesses a certain extension Ak in 
reciprocal space. In the crystal, both wavefields corre- 
sponding to an incident plane wave must now be 
replaced by two 'subwave' packets of approximately 

0567-7394/79/010038-07501.00 © 1979 International Union of Crystallography 



Y. EPELBOIN 39 

the same extension Ak which are separated by a 
distance of the order of the diameter of the dispersion 
surface, i.e. approximately l / A ,  where A is the 
extinction distance. As long as the lateral extension of 
the wavepacket is not too large each subwave packet 
retains its individuality and may be described as a 
Bloch wave. When the deformation of the crystal 
increases it may happen that both subwave packets 
overlap in reciprocal space, then the notion of wave- 
field is lost and beyond the deformed area new subwave 
packets will appear. These are newly created wave- 
fields or, in other words, diffraction. The Eikonal theory 
corresponds to the case where a wave packet does not 
lose its structure composed of two subwave packets: 
diffraction phenomena may be neglected and it is 
simply a case of geometrical optics. 

Crystal waves may be represented as modulated 
waves with a fast oscillation of periodicity A, corres- 
ponding to the X-ray wavelength in the crystal modu- 
lated by a wave of periodicity A superimposed on it. The 
distortions inside the crystal do not affect the carrier 
wave itself since its oscillations are much faster than the 
variations of the local deformation but modify the 
modulation either by changing its length (geometrical 
optics) or when the deformation varies quickly by 
destroying the modulation itself (diffraction). The limit 
of validity of the geometrical optics may be predicted 
and this leads to the criterion of geometrical optics 
(Authier & Balibar, 1970). 

Criterion o f  the geometrical  optics 

Let us write the well known Takagi-Taupin 
equations: 

82 I/J0/SS 0 t~S h - -  2inkfl[, cOgt0/8s 0 

+ 7 [ 2 k E C E x h x ~ l f f o - - O  , (1) 

82 ~llh/SSo 8Sh - -  2inkfl'a cqqJJ8s0 + ( n2 k2 C2 •h ,~h 

-- 2ink 8fl/,/8so) ~'h = 0, (2) 

where k = 1/2, Xh and X~ are the Fourier components of 
the dielectric susceptibility, and s o and s a are unit 
vectors along the refracted and reflected directions 
respectively. 

By an appropriate choice of the extremities of the 
wave vectors inside the crystal: 

fl], = (-- a/k) egg. u(r)/8Sh, (3) 

where g is the reciprocal-lattice vector corresponding to 
the reflection and u(r) the local deformation at point r 
inside the crystal. 

Authier & Balibar (1970) have shown that Takagi's 
equations are equivalent to those established by Kato 
(1963) in the Eikonal theory when cqfl~,/tgs o may be 
neglected in equation (2). If this is not the case, when 
~2kEC2XhX~ becomes negligible in equation (2), the 

propagation of the waves inside the crystal may be 
described by diffraction optics. Thus, geometrical 
optics will be valid if: 

2nkl 8fl;,/8Sol .~ 7t 2 k 2 C 2 ZhX~" (4) 

This is the criterion of geometrical optics. We may 
write this as: 

G ~ ½. nk 2 C 2 ZhZ~, (5) 

where G = 18 2 g. u(r)/8s o 8s~l. 
Balibar (1975) has shown that a wave packet will not 

lose its structure as long as this criterion is fulfilled. In 
other words, the Eikonal theory will be valid only if the 
radius of curvature of the net planes, near the defect, is 
much larger than A. 

In a previous paper (Balibar, Epelboin & Malgrange, 
1975), we studied the ratio of the diffracted wavefields 
as a function of G in a crystal deformed by a large 
thermal gradient. Increasing the gradient of defor- 
mation, we were able to change the value of G and we 
calculated the X-ray intensity on the exit surface of the 
crystal. It was possible to distinguish the diffracted 
wavefields from the curved ones and we plotted the 
diffracted intensity versus the values of G (Fig. 1). 

We will apply these results to the understanding of 
the diffraction near the core of a dislocation line. 

II. Diffraction effects in dislocation images 

Deformations around the core of a dislocation are 
rather complicated and it is not possible to separate 
diffraction from geometrical optics. There is no way to 
modify G, as in the case of a thermal gradient, to give a 
predominant weight to one of these phenomena. Fig. 1 
may be used to evaluate the amount of diffracted wave- 
field for a certain range of values for G. We see, for 
example, that if G is lower than a given value n only a 
certain percentage of the wavefields are diffracted. Thus 
if we modify the deformation around the core of the 
dislocation so that G is never greater than n, as shown 
schematically in Fig. 2(a), we will be able to under- 
stand the role of curved wavefields. On the other hand, 
if we only take into account the areas where G is 
greater than this cut-off value n (Fig. 2b) we will mostly 
study the contribution of the diffracted wavefields. 
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Fig. 1. Percentage of diffracted wavefields as a function of G in the 

case of a large thermal gradient. Unit: ½nkEC2ZhXh (after 
Balibar, Epelboin & Malgrange, 1975). 
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For this purpose we have modified a simulation 
routine (Epelboin, 1974, 1977); this calculates G at any 
point inside the crystal and, according to its value, 
allows one to take into account the areas where G is 
larger than a given cut-off value or to limit the 
deformation so that G is never larger than this cut-off 
value, following the rules described in Fig. 2. The 
complete simulation of the image of the defect is the 
reference and permits a determination of the importance 
of diffraction and geometrical optics. 

(a) Experimental data 

The dislocation under study has already been 
simulated (Balibar & Authier, 1967; Epelboin, 1974). It 
is inclined in a silicon wafer 800 gm thick; the reflection 
is Mo Ka 220 in a symmetric setting. 

We first consider the experimental case where b = 
½[101], thus g.b ~: 0; we then study a dislocation 
which presents a minimum of contrast with g. b = 0. In 
a second part we study the paths of the wavefields for 
an edge dislocation. 

All simulations have been drawn by means of an 
IBM experimental printer (Handelmann, 1975). 

(b) Contrast when g. b 4= 0 

The dislocation is neither edge nor screw; the angle 
between the line and b is about 30 °. Fig. 3 shows the 
contour map corresponding to the values of G around 
the core of the dislocation; it is drawn in a plane of 
incidence and the dislocation line crosses it in the 
middle of the square; its size is 10 × 10 gm. The 
contour line corresponding to the equality to the 
criterion of the geometrical optics G = 1 is outside Fig. 
3 and extends to a distance of the order of 50 x 50 grn. 
According to Fig. 1, contour line 10 means that inside 
this line diffraction is predominant since more than 
50% of the wavefields are diffracted. Fig. 4 shows the 
simulated projection topograph of this dislocation for 
various cut-off values for G. Fig. 4(a) is the reference 
since it includes all the deformed areas. The succeeding 
pairs of simulations are for G > or < n, where n takes 
the values shown in Fig. 4(b)-(g). Some slight changes 

(a) 

G 

(b) 
Fig. 2. Method of simulation. G values versus position of the 

current point along a line passing through the core of the 
dislocation. (a) Areas taken into account for G lower than the 
cut-off value n. (b) Areas taken into account for G greater than 
the cut-off value. 

are noticeable in Fig. 4(b) which takes into account 
areas where G > 1 (the geometrical optics criterion). 
Fig. 4(c) is complementary: the simulation for G < 1 is 
unsatisfactory since only long-range stresses create this 
image. However, the differences between Fig. 4(a) 
which includes and 4(b) which neglects long-distance 
stresses show that their influence is important, 
especially in the dynamical image. This result demon- 
strates that X-ray topography is sensitive to long-range 
strain and that accurate simulations may not be 
obtained with the field of deformation limited. Figs. 4(d) 
and 4(e) correspond to a cut-off value G = 10; thus, in 
Fig. 4(d) diffraction is predominant since more than 
50% of the wavefields are diffracted (Fig. 1). Although 
an important part of the deformation is suppressed the 
image is still good, much better than that obtained with 
predominance given to the curved wavefields as in the 
complementary simulation of Fig. 4(e), G _< 10. Fig. 
4 ( f )  and 4(g) correspond to a cut-off value G = 50. 
The corresponding diffraction regions are very small as 
shown in Fig. 3, but Fig. 4 ( f )  still retains the main 
feature of the whole image. Of course, Fig. 4(g) 
(G N 50) is better because the neglected areas are very 
small. These two last simulations clearly show the 
importance of diffraction contributing to the contrast. 
From the standpoint of geometrical optics Fig. 4(e), 
where G equals 10, may be considered as the limit of 
validity for any theory based on this phenomenon only; 
the simulated image is still very different from the 
complete one. Fig. 4 ( f ) ,  in which diffraction is 
predominant, bears much more resemblance to the 
reference Fig. 4(a). The conclusion is that diffraction 
may not be neglected if we wish to understand the 
contrast of dislocations for g. b :/: 0. Perhaps it is not 
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Fig. 3. Contour map for G in a plane of incidence (Mo Ka 220, b -- 
½1101], area 10 x 10 gm, unit as in Fig. 1). 
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too much of an exaggeration to say that the diffracted 
wavefields are the main phenomenon responsible for the 
contrast of such a dislocation. 
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(c) Contrast  when g. b = 0 

Let us now consider a dislocation with the same 
orientation in the crystal but with a different Burgers 
vector b = ½[lJ0]; it is not a screw dislocation and 
this explains why a slight contrast is still visible in Fig. 
6(a);  ( g , h , l ) ~  0 where  i is a unit vector along the 
dislocation line. Fig. 5 shows the contour map for 
various values of G; the areas enclosed by the different 
G values are much smaller than in the preceding case 
since g . b = 0 .  This explains why the complete 
simulation of Fig. 6 (a) does not present any dynamical 
image: there is just a faint intermediary image. If we 
now set the cut-off value equal to the criterion of the 
geometrical optics the image obtained, taking into 
account long-range deformation only (G < 1), is com- 
parable to the complete one (Fig. 6b); the dislocation is 
not visible in the simulation obtained with G _ 1 (Fig. 
6c). There is no doubt that curved wavefields explain 
completely the contrast of this dislocation. The areas 
where diffraction is predominant are really too small to 
contribute to the image and the diffracted intensity is 
negligible. 

III. Paths  o f  the wavef ie ids  in a p lane  o f  incidence  

i!l~i !i ............ i . . . ...... Lii:.. :i~ 
- :t~; . . . . . .  

"~ . :~ ~.-'~ :: ~!~" "ii ! ? ~ ~11 i ~ ! i  : :  ! 1.00 

(~, , '" 0,0 , ~  "~ 
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(f.) ~ )  -~.oo 

Fig. 4. Simulated projection topographs (conditions as in Fig. 3). 
(a) Complete simulation. (b) G > 1. (c) G < 1. (d) G > 10. (e) 
G_< I0. (f)G> 50. (g)G _<50. 

We will now study the paths of the wavefields in the 
crystal in a setting where the distortion of the crystal 
may be easily understood. Let us consider an edge 
dislocation perpendicular to the plane of incidence at 
half-depth inside the crystal; the extra plane is vertical 
and on the side of the exit surface of the crystal, which 
means that b = ½[110]. The curvature of the net 
planes corresponds to the curvature of the crystal 
around the core of the dislocation since the extra plane 

-1 .00  -0 .50  0.0 0.50 

SURFACE 

1.00 

Fig. 5. Contour map for G (same conditions as in Fig. 3, except 
b = ½li 101). 
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is a reflection plane. In a previous study (Epelboin, 
1975) we simulated the paths of the wavefields for this 
geometry but we were unable to distinguish diffraction 
from geometrical optics. We have repeated the same 
study for different positions of the dislocation in the 
Borrmann triangle and for various cut-off values for G. 
This represents more than 130 different simulations and 
since they all lead to the same conclusion we present 
only a few. 

(a) Incident plane wave 

Fig. 7 shows the contour map for G; the area is 50 x 
50 ~tm and is larger than in the preceding cases since 
this dislocation presents a maximum of visibility. Since 
we now examine wavefields in the crystal Fig. 8 shows 
their paths in the Borrmann fan in the case of an 
incident plane wave for which departure from the exact 
Bragg condition is r /= - -1 .  Fig. 8(a) is the simulation 
with the whole deformation; the succeeding simulations 
are for G > or < n, where n takes the values shown in 
Fig. 8(b)--(g). The refracted beam is on the left and the 
entrance surface is at the top. Fig. 8 ( f )  takes into 
account areas where G > 500. It is interesting to note 
that a narrow beam is still diffracted from the 
dislocation. This beam is also visible in the complete 
simulation (Fig. 8a) and in all simulations taking into 
account the most deformed parts of the crystal. It does 
not appear in Fig. 8(c) where G < 10 and where curved 
wavefields are predominant; this demonstrates that it is 
a diffracted wave. Figs. 8(d), G ___ 50, and 8( f ) ,  
G < 50, where diffraction is the main phenomenon 
show great similarities and are not very different from 
the complete simulation (Fig. 8a). This is in agreement 
with our previous results and shows the importance of 
diffracted wavefields. Fig. 8(c) shows the paths of 
curved wavefields since G < 10. We may see how wave- 
field 1, on the left, is bent by the presence of the 
dislocation. Fig. 8(e) shows the paths when G < 50. 
Diffraction and curvature of the wavefields occur 
together: this image is roughly the superposition of Fig. 
8(c) where curvature is predominant, and Fig. 8 ( f )  

where diffraction only exists. We may also notice that 
the shadow of the dislocation, i.e. the dynamical image, 
does not appear in simulations where geometrical optics 
are the main phenomena. Moreover, it is not clear from 
the simulations how the curved wavefields are bent near 
the core of the dislocation, on account of the local 
lattice curvature [Fig. 8(c) and (e)]. 

(b) Incident spherical wave 

All the features that we have noticed in the case of an 
incident plane wave are also visible in the case of an 
incident spherical wave (Fig. 9). We may notice that the 
shape of the dynamical image is very sensitive to the 
diffracted wavefields: it is more visible when these are 
predominant (Fig. 9b and d) and may not be explained 
by curved wavefields only. This is also in agreement 
with the preceding simulations. It demonstrates that 
diffraction and geometrical optics both contribute to the 
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Fig. 7. Contour map for G (b = ½[1101, Mo Ka 220, area 50 x 
50 gm). 
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Fig. 6. Simulated projection topographs (same conditions as in Fig. 5). (a) Complete simulation. (b) G _< 1. (c) G > 1. 
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(a) (a) 

(b) (c) (b) (c) 

(d~ (e) (d) (e) 

( f )  (g) 

Fig. 8. Paths of the wavefields (conditions as in Fig. 7; incident 
plane wave, r / = - - l ;  silicon 800 jam thick; position of the 
dislocation: depth 400 lam, 30 ~tm on the left of the height of the 
Borrmann fan). (a) Complete simulation. (b) G > 10. (c) G < 10. 
(d) G > 50. (e) G < 50. ( f )  G > 500. (g) G < 500. 

formation of the image; there is no doubt that 
geometrical optics cannot explain such paths for the 
wavefields near a dislocation and that diffraction is a 
very important phenomenon. 

Simple explanations for the contrast of dislocations 
should be based on diffraction rather than on geometri- 
cal optics and curved wavefields. 

Conclusion 

For many years it has been well known that diffraction 
must be taken into account to explain the contrast of 
dislocations in X-ray topography; we have shown that 
it is the main phenomenon responsible for the contrast 
when g .b : / :0 .  However, certain features may be 
explained by curved wavefields, as, for example, the 
influence of long-distance stresses to which the 

( f )  (g) 

Fig. 9. Same simulations as in Fig. 8 for an incident spherical wave. 

dynamical image is sensitive. When a dislocation 
presents a minimum of contrast, i.e. when g.b = 0, the 
areas where diffraction is predominant are too small 
and the contrast may be satisfactorily explained by 
geometrical optics alone. This may not be true under all 
conditions and it may happen that, although g. b = 0, 
the diffracting volume becomes large enough to 
contribute to the contrast. Each case must be treated 
individually. For example, in KDP Balibar & Dunia 
(1979) have explained by diffraction phenomena the 
contrast of dislocations presenting a minimum of 
contrast. It is always desirable to draw the contour map 
for G in each case. 

Many authors have tried to explain the contrast of 
defects by geometrical optics, using the well known fact 
that wavefields 1 are bent according to the local 
curvature of the diffraction planes and wavefields 2 in 
the opposite direction. From our study it seems that this 
is too simplistic and it is dangerous to use such 
explanations, particularly in an attempt to determine 
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the sense of Burgers vectors. Diffraction effects must be 
taken into account and the understanding of the 
contrast of any defect which highly disturbs the crystal 
may not be reduced to geometrical optics. 

This work has been made possible through a fellow- 
ship from IBM World Trade. 
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